Pain Mechanisms

@#@

Prof Michael G Irwin MD, FRCA, FANZCA FHKAM Head Department of Anaesthesiology University of Hong Kong

Cutaneous Nociceptors

- Definition
 - Morphological (light & electron microscope)
 - Physiological (patterns of response to stimuli)
- Ao mechanical
 - Thinly myelinated, sharp/stinging pain
- C Polymodal
 - Unmyelinated, dull/burning pain
- Silent/sleeping (mechanically insensitive Ao and C)
 - Only active when tissue is injured
 - inflammatory conditions
 - -40% of C & A δ are silent

Nociceptors

- Thermal nociceptors are activated by noxious heat (above 45°C) or cold (below 5°C)
- Mechanical nociceptors respond to excess pressure or mechanical deformation
- Polymodal nociceptors respond to damaging stimuli of a chemical, thermal, or mechanical nature
- Primary afferent nerve fibres transduce different forms of energy into generator potentials
 - If of sufficient magnitude, these generator potentials lead to action potentials
 - Action potentials \rightarrow axon to the spinal cord

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Nociceptor terminations in dorsal horn

Nociceptor Sensitization (Hyperalgesia)

• Manifestation

- $-\downarrow$ threshold of activation after injury
- −↑ intensity of response to injury
- Emergence of spontaneous activity
- May occur within minutes and last for hours

Hyperalgesia

• Primary

- Sensitization of primary neurons $\rightarrow \downarrow$ threshold to noxious stimuli *within site of injury*
- ↑ pain from suprathreshold stimuli
- Spontaneous pain

Secondary

 Sensitization of primary neurons in surrounding uninjured areas

- May involve:

- Peripheral sensitization
- Central sensitization (↑ excitability of central neurons)

Pain sensitisation

Byers MR et al. In: Bonica's Management of Pain. Philadelphia: Lippincott Williams & Wilkins; 2001.

Central Sensitization

- 1 afferent barrage
- Expansion of receptive fields of dorsal horn neurons
- ↑ release of peptides (e.g. SP, calcitonin gene-related peptide) & excitatory amino acids (mainly glutamate) neurotransmitters

– Act at NK1 & NMDA receptors

- Postsynaptic morphologic changes also occur
- Neurochemical changes result in several plasticity responses including apoptosis (glial and neuronal cell death), axonal sprouting, and new afferent connections

Modulation of Central Neurons

Modification of central neurons

Modification of central neurons

Evidence for Central Sensitization

- SP & glutamate most extensively studied
 - Synthesized in same nociceptor cell body in DRG
 - $-\uparrow$ expression after tissue injury
 - Intrathecal administration causes pain like behaviour in animals
 - Antagonists block these effects

Substance P

- Neurokinin (NK)
- Acts at NK1 receptor
- NK1 antagonists
 - NOT analgesic
 - Significantly attenuate hyperalgesia
 - But only to ~50% of maximum
 - \Rightarrow another pathway must be involved

Glutamate

- Acts at
 - Ionotropic, cation-selective, ligand-gated receptors
 - Metabotropic G protein-coupled receptors
 - N-methyl- D-aspartate (NMDA) receptors
 - non-NMDA receptors (alpha-amino-3-hydroxy-Smethyl-4-isoxazolepropionate {AMPA})

 NMDA and non-NMDA receptors are widely distributed throughout CNS & PNS

NMDA activation

- Substance P
 Substance P
 MDA activation
- Calcium entry into neurone
 - Generation of NO
 - Phospholipase activation
 - Spinal production of prostanoids

Neuronal Plasticity and Pain

- Neurons detecting and transmitting pain display "plasticity"
 - capacity to change function, chemical profile or structure
 - response to painful stimuli and inflammation
 - all contribute to altered sensitivity to pain

Three Forms of "Neuronal Plasticity"

Activation

- rapid onset, substantial, readily reversible

Autosensitisation and Wind-up

Modulation

- follows repeated, intense stimuli, substantial, slowly reversible
 - Peripheral and Central Sensitisation
- Modification
 - follows prolonged, intense stimuli or nerve damage, very long-lasting
 - Persistent, pathological (neuropathic) pain

Woolf and Salter, Science 288: 1765-1768, 2000

Adapted from Woolf and Salter, Science 288: 1765-1768, 2000

VR1: detects noxious heat

α2-adrenoceptors (subtype A)

- Descending noradrenergic inhibitory pathways modulate nociceptive transmission and spinal sensitisation after tissue injury
- α2-adrenoceptor agonists relieve mechanical hyperalgesia and depress nerve fibre action potentials
- Ca²⁺ channel auxiliary subunit α-2δ-1 plays important role in neuropathic pain processing (up-regulated in the DRG after spinal nerve injury)
- Pregabalin binds specifically to the α-2δ-1 subunit of voltage-dependent Ca²⁺ channels and reduces Ca²⁺ current

Opioid receptors

- Activation reduces neuronal excitability through the inhibition of voltage-dependent Ca²⁺ channels and adenyl cyclase, and opening of K⁺ channels
- Opioid induced reduction in excitability will lead to an inhibition of pain
- ATP sensitive potassium (KATP) channels are opened and modulated by both opioid and non opioid Gprotein coupled receptors to also produce antinociception

Humoral messengers

- Blood-brain barrier has components that enable a blood-borne cytokine to stimulate the production of PGE2
 - inflammatory mediator and powerful modulator of nociception
- These cells have receptors that specifically recognise IL-1β indicating that the activated immune system controls central reactions to peripheral inflammation through a prostaglandindependent, blood-borne cytokine-mediated pathway
 - Interestingly it is mainly the increase in CSF levels of IL-1 β that mediates local inflammation in the brain and not the sensory inflow from nerve fibres
 - It has also been shown that high concentrations of proinflammatory cytokines (IL-1β, IL-2, IL-6, IFN-γ, tumour necrosis factor (TNF)-α) in the plasma correlate with increasing pain intensity
 - Chronic pain patients also show a significant increase in plasma levels of NO in comparison to healthy controls

Homunculus

Summary

- Transmission of a pain signal from the periphery to the brain involves complex interactions between different types of neurons, through release of various neurotransmitters and receptor and ion channel activation
- Perception of pain is also affected by descending influences from the brain
- The components of the "pain pathway" have potential for modification both in terms of structure and function
- "Plasticity" in the system is responsible for the development of abnormal and chronic pain states, well beyond the duration of the inciting injury
- Understanding the neurobiology behind pain transmission is pivotal in the effective use of available analgesics and for the development of future therapy

